DEVOIR DE SYNTHESE N° 1

Mr ABIDI Farid

CLASSE: 4^{éme} MATHEMATIQUES

EPREUVE *Mathematiques*

 $Dur\acute{e}e \quad 3h$ (Date: 08-12-2009

Exercice 1: (3 points)

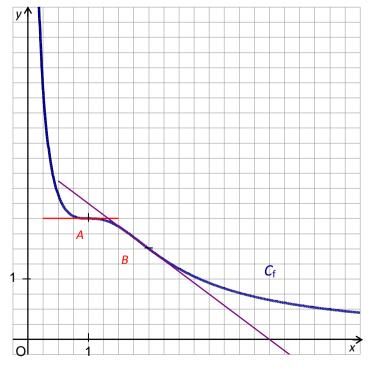
Pour chaque question, trois réponses sont proposées dont une et une seulement est exacte. Indiquez sur vôtre copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

- 1. Soit f une fonction continue sur [0, 1] et dérivable sur [0, 1]. On suppose que f(0) = 0 et f(1) = 1.
 - a) La fonction g définie sur [0, 1] par g(x) = f(x) x admet un extremum local sur [0, 1];
 - **b)** La fonction f est croissante sur [0, 1];
 - c) Pour tout c appartenant à]0, 1[, on a : $f'(c) \neq 1$
- 2. On considère la suite $\left(u_{_{n}}\right)$ définie sur \mathbb{N} * par $u_{_{n}}=1+\frac{\left(-1\right)^{n}}{n}$
 - a) $\lim_{n\to+\infty} u_n = 0$;
 - **b)** (u_{2n}) est une suite croissante;
 - c) les suites (u_{2n}) et (u_{2n+1}) sont adjacentes .
- 3. Sur la figure ci-dessous est tracée la courbe représentative notée C_f d'une fonction f dérivable et strictement décroissante sur $]0;+\infty[$. On sait que :

Les droites d'équation respectives x = 0 et y = 0 sont asymptotes à la courbe C_f ; la courbe C_f admet une tangente parallèle à l'axe des abscisses au point A d'abscisse 1; la tangente à la courbe C_f au point B = 0 passe par la point de coordonnées A = 0 passe par la point A = 0 passe par la

la tangente à la courbe C_f au point $B\left(2;\frac{3}{2}\right)$ passe par le point de coordonnées $\left(4;0\right)$

- a) La courbe représentative de la fonction réciproque f^{-1} admet deux points d'inflexion.
- $\mathbf{b)} \quad \lim_{x \to +\infty} \mathbf{f}^{-1}(x) = 0 ;$
- c) f^{-1} est dérivable en $\frac{3}{2}$ et $(f^{-1})'(\frac{3}{2}) = -\frac{3}{4}$



Exercice 2: (6 points)

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 + 5x 1$.
 - a) Montrer que f réalise une bijection de $\mathbb R$ sur $\mathbb R$.
 - b) Montrer que l'équation $x^3 + 5x = 1$ admet une unique solution α dans $\mathbb R$.
 - c) Etablir que $0 < \alpha < \frac{1}{5}$.
- 2. Pour tout entier n supérieur ou égal à 1, on considère l'équation (E_n) : $x^3 + 5x = n$.
 - a) Justifier que pour tout entier n \geq 1 , l'équation $\left(E_{_{n}}\right)$ admet une et une seule solution $\alpha_{_{n}}$ dans $\mathbb R$.
 - b) Déterminer la monotonie de la suite $(\alpha_n)_{n>1}$.
 - c) Montrer que pour tout $n \ge 1$, $\alpha \le \alpha_n \le \sqrt[3]{n}$. En déduire que $\lim_{n \to +\infty} \frac{\alpha_n}{n} = 0$.
 - d) Justifier que pour tout $n \ge 1$, $\left(\frac{\alpha_n}{\sqrt[3]{n}}\right)^3 + 5\left(\frac{\alpha_n}{n}\right) = 1$. En déduire que $\lim_{n \to +\infty} \frac{\alpha_n}{\sqrt[3]{n}} = 1$.
- 3. On pose (F_0) : 5x = 1 et pour tout entier naturel n non nul, on considère l'équation (F_n) : $x^n + 5x = 1$.
 - a) Montrer que pour tout entier naturel n , l'équation $\left(F_{_{\! n}}\right)$ admet une et une seule solution $\beta_{_{\! n}}$ dans $\left[0,+\infty\right[$.
 - b) Calculer β_0 , β_1 et β_2 . Démontrer que pour tout entier n, $0 < \beta_n \le \frac{1}{5}$. En déduire $\lim_{n \to +\infty} (\beta_n)^n$.
 - c) En utilisant l'équation satisfaite par $\,eta_{\scriptscriptstyle n}\,$, déduire $\,\lim_{\scriptscriptstyle n\to +\infty} eta_{\scriptscriptstyle n}\,$.

Exercice 3 : (5 points)

Soit ABC un triangle isocèle et rectangle tel que $(\overrightarrow{BC}, \overrightarrow{BA}) = \frac{\pi}{2} [2\pi]$ et soit O le milieu de [AC]. On désigne par I le milieu de [OB] et par D le symétrique de O par rapport à (BC). Soit J le point d'intersection des droites (AD) et (BC).

- 1. a) Montrer qu'il existe un unique déplacement f tel que f(A) = C et f(O) = D.
 - b) Montrer que f est la rotation de centre B et d'angle $\left(-\frac{\pi}{2}\right)$.
 - c) Soit K = f(I). Montrer que K est le milieu de [BD] et en déduire que les points O, J et K sont alignés.
- 2. On pose g = $S_{(BO)} \circ S_{(AB)} \circ f^{-1}$.
 - a) Déterminer g(B) et g(C).
 - b) En déduire que $f^{-1} = S_{(AB)} \circ S_{(BO)}$.

- 3. On pose $h = S_{(OD)} \circ f^{-1}$. On désigne par (Δ) la médiatrice du segment [BD]. Montrer que h est la symétrie glissante d'axe (Δ) et de vecteur \overrightarrow{BO} .
- 4. Déterminer l'ensemble des points M du plan tel que $h(M) = f^{-1}(M)$.
- 5. Caractériser l'application $S_{(BO)} \circ h$.

Exercice 4: (6 points)

Le plan complexe est rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$ d'unité graphique 3 cm.

On considère dans \mathbb{C} l'équation $\left(E_{\theta}\right)$: $z^2 - \left(e^{i\theta} + e^{-i\theta}\right)z + 1 = 0$, où θ est un réel de $\left]0, \frac{\pi}{2}\right[$.

- 1. a) Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation (E_θ) . On mettra les solutions z_1 et z_2 sous forme exponentielle où z_1 est celle dont la partie imaginaire est négative .
 - b) On désigne par M_1 , M_2 et M_3 les points d'affixes respectives z_1 , z_2 et $z_3 = i$. Déterminer la valeur de θ pour laquelle $OM_1M_2M_3$ soit un parallélogramme.
 - c) Faire une figure pour $\theta = \frac{\pi}{6}$.

Dans tout ce qui suit, on prend: $\theta = \frac{\pi}{6}$.

- 2. Soit t la translation de vecteur \overrightarrow{w} d'affixe $\left(-\sqrt{3}+i\right)$. Calculer l'affixe z_4 du point $M_4=t\left(M_1\right)$ puis placer le point M_4 .
- 3. Soit r la rotation de centre O et d'angle $-\frac{2\pi}{3}$. Calculer l'affixe z_5 du point $M_5=r(M_1)$ puis placer le point M_5 .
- 4. On désigne par z_6 l'affixe du point M_6 le symétrique de M_3 par rapport à O. Montrer que les racines sixièmes de (-1) sont z_k , avec $k \in \{1,2,3,4,5,6\}$.
- 5. Ecrire le polynôme $z^6 + 1$ sous forme de produit de trois polynômes de second degré à coefficients réels.

Solution

Exercice 1:

1. **a**) ; 2.**c**) ; 3. **b**)

Exercice 2:

- 1. a) f est continue et dérivable sur \mathbb{R} . Comme, pour tout x réel, $f'(x) = 3x^2 + 5 > 0$ alors f est strictement croissante sur \mathbb{R} donc f réalise une bijection de \mathbb{R} sur $f(\mathbb{R}) = \lim_{-\infty} f, \lim_{+\infty} f =]-\infty, +\infty[=\mathbb{R}$.
 - b) L'équation $x^3 + 5x = 1$ est équivalente à l'équation f(x) = 0. Comme f est une bijection de \mathbb{R} sur \mathbb{R} et que 0 admet un unique antécédent par f dans \mathbb{R} alors l'équation $x^3 + 5x = 1$ admet une solution unique réelle α .

c)
$$f(0) = -1$$
 et $f\left(\frac{1}{5}\right) = \frac{1}{125} + 1 - 1 = \frac{1}{125}$ donc $0 < \alpha < \frac{1}{5}$.

- 2. Pour tout entier n supérieur ou égal à 1, on considère l'équation (E_n) : $x^3 + 5x = n$.
 - a) La fonction g définie sur $\mathbb R$ par $g(x)=x^3+5x$ est continue et strictement croissante sur $\mathbb R$ donc g réalise une bijection de $\mathbb R$ sur $\mathbb R$ donc pour tout entier $n\geq 1$, l'équation g(x)=n ou encore l'équation $\left(E_n\right)$ admet une et une seule solution α_n dans $\mathbb R$.
 - b) On a : $g(\alpha_n) = n$ et $g(\alpha_{n+1}) = n+1$. Comme n < n+1 alors $g(\alpha_n) < g(\alpha_{n+1})$ puis que g est strictement croissante sur $\mathbb R$ alors pour tout $n \ge 1$, $\alpha_n < \alpha_{n+1}$ donc la suite $(\alpha_n)_{n \ge 1}$ est croissante.
 - c) On a $g(\alpha)=0$, pour tout $n\geq 1$, $g(\alpha_n)=n$ et $g(\sqrt[3]{n})=n+5\sqrt[3]{n}+1\geq 1$. Comme g est une bijection strictement croissante sur $\mathbb R$ alors pour tout $n\geq 1$, $\alpha\leq\alpha_n\leq\sqrt[3]{n}$.

On a pour tout $n \ge 1$, $\frac{\alpha}{n} \le \frac{\alpha_n}{n} \le \frac{\sqrt[3]{n}}{n}$. D'autre part :

$$\lim_{n\to +\infty}\frac{\alpha_n}{n}=0 \ \ \text{et} \ \lim_{n\to +\infty}\frac{\sqrt[3]{n}}{n}=\lim_{n\to +\infty}\sqrt[3]{\frac{1}{n^3}}=\lim_{n\to +\infty}\sqrt[3]{\frac{1}{n^2}}=0 \qquad \text{donc} \quad \lim_{n\to +\infty}\frac{\alpha_n}{n}=0 \ .$$

d) Pour tout $n \ge 1$, $g(\alpha_n) = n \Leftrightarrow \alpha_n^3 + 5\alpha_n = n \Leftrightarrow \frac{\alpha_n^3}{n} + 5\frac{\alpha_n}{n} = 1 \Leftrightarrow \left(\frac{\alpha_n}{\sqrt[3]{n}}\right)^3 + 5\left(\frac{\alpha_n}{n}\right) = 1$.

$$\text{Ainsi } \lim_{n \to +\infty} \left(\frac{\alpha_n}{\sqrt[3]{n}} \right)^3 + 5 \left(\frac{\alpha_n}{n} \right) = 1 \quad \text{. Or } \lim_{n \to +\infty} \frac{\alpha_n}{n} = 0 \text{ , alors on en déduit que } \lim_{n \to +\infty} \frac{\alpha_n}{\sqrt[3]{n}} = 1 \text{ .}$$

- 3. On pose (F_0) : 5x = 1 et pour tout entier naturel n non nul, on considère l'équation (F_n) : $x^n + 5x = 1$.
 - a) L'équation (F_0) : 5x = 1 admet une unique solution.

Pour tout entier naturel n >0 , on introduit la fonction $f_n(x) = x^n + 5x - 1$, $x \ge 0$.

 $f_{_{\! n}}$ est continue et dérivable sur $\left[0,+\infty\right[$. Pour tout $x\geq0$, $\,f_{_{\! n}}^{\,\prime}\left(x\right)=nx^{_{\! n-1}}+5>0$. Donc

 f_n est strictement croissante sur $\left[0,+\infty\right[$. Il en résulte que l'équation $\left(F_n\right)$ admet une et une seule solution β_n dans $\left[0,+\infty\right[$.

b) On a
$$\beta_0 = \frac{1}{5}$$
;

 β_1 est l'unique solution positive de l'équation $x + 5x - 1 = 0 \Leftrightarrow 6x - 1 = 0 \Leftrightarrow x = \frac{1}{6}$ donc

$$\beta_1 = \frac{1}{6}.$$

 $\beta_{\rm 2}$ est l'unique solution positive de l'équation

$$x^2 + 5x - 1 = 0 \iff x = \frac{-5 + \sqrt{29}}{2} \text{ ou } x = \frac{-5 - \sqrt{29}}{2} \text{ donc } \beta_2 = \frac{-5 + \sqrt{29}}{2}.$$

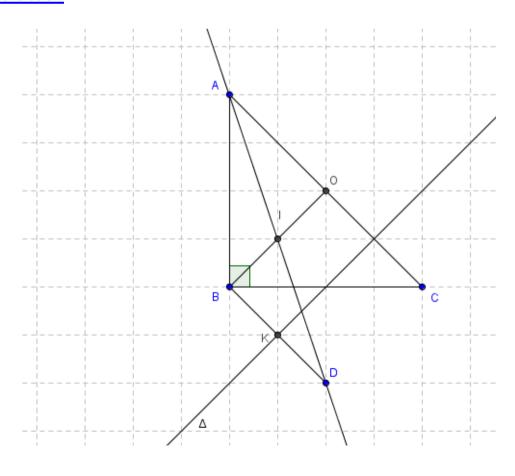
Comme pour tout entier n, $f_n(0) = -1$, $f_n(\beta_n) = 0$ et $f_n(\frac{1}{5}) = (\frac{1}{5})^n + 5 \times \frac{1}{5} - 1 = (\frac{1}{5})^n$ alors

$$0 < \beta_n \le \frac{1}{5}$$
. Il en résulte que pour tout n >0, $0 < (\beta_n)^n \le \left(\frac{1}{5}\right)^n$.

Comme
$$\frac{1}{5} \in]-1,1[$$
 alors $\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$ donc $\lim_{n \to +\infty} \left(\beta_n\right)^n$.

c) Le réel β_n vérifie l'équation $f_n(\beta_n) = 0 \Leftrightarrow (\beta_n)^n + 5\beta_n - 1 = 0 \Leftrightarrow (\beta_n)^n = 1 - 5\beta_n$. Puisque $\lim_{n \to +\infty} (\beta_n)^n$ alors $\lim_{n \to +\infty} (1 - 5\beta_n) = 0$ donc $\lim_{n \to +\infty} \beta_n = \frac{1}{5}$.

Exercice 3:



1. a) O est milieu de [AC] donc AO = OC. Comme D = $S_{(BC)}(O)$ alors OC = DC.

Il en résulte que AO = CD et AO \neq 0 et par suite il existe un unique déplacement f tel que f(A) = C et f(O) = D.

b) Cherchons l'angle du déplacement f :

$$(\overrightarrow{AO}, \overrightarrow{CD}) = (\overrightarrow{AC}, \overrightarrow{CD})[2\pi] \Leftrightarrow (\overrightarrow{AO}, \overrightarrow{CD}) = \pi + (\overrightarrow{CA}, \overrightarrow{CD})[2\pi] \Leftrightarrow (\overrightarrow{AO}, \overrightarrow{CD}) = \pi + 2(\overrightarrow{AC}, \overrightarrow{CB})[2\pi]$$
$$\Leftrightarrow (\overrightarrow{AO}, \overrightarrow{CD}) = \pi + 2\frac{\pi}{4}[2\pi] \Leftrightarrow (\overrightarrow{AO}, \overrightarrow{CD}) = -\frac{\pi}{2}[2\pi]$$

Donc f est une rotation d'angle $-\frac{\pi}{2}$. Le centre de f est le point d'intersection des médiatrices des segments [AC] et [OD] qui n'est autre que le point B.

Ainsi, f est la rotation de centre B et d'angle $\left(-\frac{\pi}{2}\right)$.

- c) Soit K = f(I). I est le milieu de [OB] donc K est le milieu de f([OB]) = [DB]. Le triangle BDO est isocèle en B, (DI) est la médiane issue de D et (BC) est la médiane issue de B. Comme J est le point d'intersection des médianes (DI) et (BC) alors J est le centre de gravité de BDO donc J appartient à la médiane (OK) issue de K. Ainsi les points O, J et K sont alignés.
- 2. On pose $g = S_{(BO)} \circ S_{(AB)} \circ f^{-1}$.

$$\begin{split} \text{a)} \ \ & \text{g(B)=} \ S_{(BO)} \circ S_{(AB)} \circ f^{-1}\left(B\right) = S_{(BO)} \circ S_{(AB)}\left(B\right) = S_{(BO)}(B) = B \\ \text{et} \ \ & \text{g(C)=} \ S_{(BO)} \circ S_{(AB)} \circ f^{-1}\left(C\right) = S_{(BO)} \circ S_{(AB)}\left(A\right) = S_{(BO)}\left(A\right) = C \ . \end{split}$$

b) Comme $S_{(BO)} \circ S_{(AB)}$ est un déplacement et f^{-1} est un déplacement alors g est un déplacement. D'autre part , g fixe les points B et C donc g est l'identité du plan. On en déduit que $S_{(BO)} \circ S_{(AB)} \circ f^{-1} = Id_P \Leftrightarrow S_{(AB)} \circ f^{-1} = S_{(BO)} \Leftrightarrow f^{-1} = S_{(AB)} \circ S_{(BO)}$.

$$\begin{aligned} \text{3. } & \text{h} = \text{S}_{\text{(OD)}} \circ \text{f}^{-\text{l}} = \text{S}_{\text{(OD)}} \circ \text{S}_{\text{(AB)}} \circ \text{S}_{\text{(BO)}} = t_{\overline{\text{BC}}} \circ \text{S}_{\text{(BO)}} = t_{\overline{\text{BO}} + \overline{\text{OC}}} \circ \text{S}_{\text{(BO)}} = t_{\overline{\text{BO}}} \circ t_{\overline{\text{OC}}} \circ \text{S}_{\text{(BO)}} \\ & t_{\overline{\text{BO}}} \circ t_{\overline{\text{OC}}} \circ \text{S}_{\text{(BO)}} = t_{\overline{\text{BO}}} \circ \text{S}_{\Delta} \circ \text{S}_{\text{(BO)}} \circ \text{S}_{\text{(BO)}} = t_{\overline{\text{BO}}} \circ \text{S}_{\Delta} \,. \end{aligned}$$

Par suite , g est la symétrie glissante d'axe (Δ) et de vecteur \overrightarrow{BO} .

4.
$$h(M) = f^{-1}(M) \Leftrightarrow S_{(OD)} \circ f^{-1}(M) = f^{-1}(M) \Leftrightarrow S_{(OD)} \Big[f^{-1}(M) \Big] = f^{-1}(M)$$

$$\Leftrightarrow f^{-1}(M) \in (OD) \Leftrightarrow M \in f^{-1}((OD))$$

Comme f⁻¹ est la rotation de centre B et d'angle $\frac{\pi}{2}$ alors f⁻¹((OD)) est la droite perpendiculaire à (OD) passant par f⁻¹(D) = O. Donc l'ensemble (Γ) des points M du plan tel que h(M) = f⁻¹(M) est la médiatrice de [AB].

4. $S_{(BO)} \circ h$ est la composée de deux antidéplacements donc $S_{(BO)} \circ h$ est un déplacement. On a : $S_{(BO)} \circ h(D) = S_{(BO)}(O) = O$ et $S_{(BO)} \circ h(B) = S_{(BO)}(C) = A$ Et comme $\overrightarrow{DO} = \overrightarrow{BA}$ alors $S_{(BO)} \circ h = t_{\overrightarrow{BA}}$.

Exercice 4:

Le plan complexe est rapporté à un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$ d'unité graphique 3 cm.

On considère dans \mathbb{C} l'équation $(E_{\theta}): z^2 - (e^{i\theta} + e^{-i\theta})z + 1 = 0$, où θ est un réel de $\left[0, \frac{\pi}{2}\right]$.

1. a) Le calcul du discriminant donne :

$$\Delta \!=\! \left(e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}\right)^{\!2} - 4 \!=\! \left(e^{\mathrm{i}\theta} + e^{-\mathrm{i}\theta}\right)^{\!2} - 4e^{\mathrm{i}\theta}e^{-\mathrm{i}\theta} = \! \left(e^{\mathrm{i}\theta} - e^{-\mathrm{i}\theta}\right)^{\!2}.$$

Les racines de l'équation sont : $z_1=e^{-i\theta}$ et $z_2=e^{i\theta}$. La partie imaginaire de

$$z_1 \operatorname{est} \sin \theta < 0 \operatorname{car} \theta \in \left[0, \frac{\pi}{2}\right]$$
.

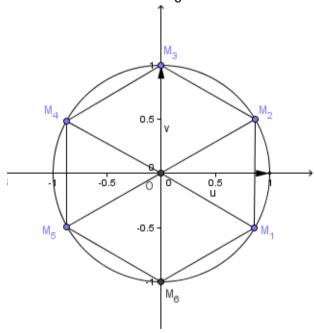
N.B : On peut aussi remarquer que l'équation (E_{θ}) s'écrit sous la forme

$$\begin{aligned} &z^2-\!\left(z_1^{}+z_2^{}\right)\!z+z_1^{}\times z_2^{}=0 \text{ . En effet, si l'on prend}: \ z_1^{}=e^{^{-i\theta}} \ \text{ et } \ z_2^{}=e^{^{i\theta}}\text{, on obtient}: \\ &z_1^{}\times z_2^{}=e^{^{-i\theta}}\times e^{^{i\theta}}=1 \text{.} \end{aligned}$$

b) $OM_1M_2M_3$ soit un parallélogramme $\iff \overrightarrow{OM_3} = \overrightarrow{M_1M_2} \Leftrightarrow 2i\sin\theta = i \Leftrightarrow \sin\theta = \frac{1}{2}$.

Comme
$$\theta \in \left[0, \frac{\pi}{2}\right]$$
 alors $\theta = \frac{\pi}{6}$.

c) Faire une figure pour $\theta = \frac{\pi}{6}$.



Dans tout ce qui suit, on prend $\theta = \frac{\pi}{6}$.

2. Soit t la translation de vecteur \overrightarrow{w} d'affixe $\left(-\sqrt{3}+i\right)$.

$$M_{_{4}}=t\left(M_{_{1}}\right) \Leftrightarrow z_{_{4}}=z_{_{1}}+\left(-\sqrt{3}+i\right) \Leftrightarrow z_{_{4}}=\frac{\sqrt{3}}{2}-\frac{1}{2}i-\sqrt{3}+i \Leftrightarrow z_{_{4}}=-\frac{\sqrt{3}}{2}+\frac{1}{2}i \; .$$

3. Soit r la rotation de centre O et d'angle $-\frac{2\pi}{3}$.

$$M_5 = r\big(M_1\big) \Leftrightarrow z_5 = e^{-i\frac{2\pi}{3}} z_1 \Leftrightarrow z_5 = e^{-i\frac{2\pi}{3}} \times e^{-i\frac{\pi}{6}} \Leftrightarrow z_5 = e^{-i\frac{5\pi}{6}} \,.$$

4. L'affixe du point M_6 le symétrique de M_3 par rapport à O est $z_6=-i$. Les racines sixièmes de (-1) sont les solutions de l'équation $z^6=-1=e^{i\pi}=e^{i(\pi+2n\pi)}$ c'est-à-

dire encore les nombres complexes qui s'écrivent sous la forme $e^{i\left(\frac{\pi}{6}+\frac{n\pi}{3}\right)}$ avec $n \in \{0,1,2,3,4,5\}$.

Il en résulte :

$$\begin{split} e^{i\left(\frac{\pi}{6}+\frac{0\pi}{3}\right)} &= e^{i\frac{\pi}{6}} = z_2 \text{ ; } e^{i\left(\frac{\pi}{6}+\frac{\pi}{3}\right)} = e^{i\frac{\pi}{2}} = i = z_3 \text{ ; } e^{i\left(\frac{\pi}{6}+\frac{2\pi}{3}\right)} = e^{i\frac{5\pi}{6}} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = z_4 \text{ ; } \\ e^{i\left(\frac{\pi}{6}+\pi\right)} &= e^{i\left(\frac{\pi}{6}-\pi\right)} = e^{-i\frac{5\pi}{6}} = z_5 \text{ ; } e^{i\left(\frac{\pi}{6}+\frac{4\pi}{3}\right)} = e^{i\frac{3\pi}{2}} = -i = z_6 \text{ et } e^{i\left(\frac{\pi}{6}+\frac{5\pi}{3}\right)} = e^{i\frac{11\pi}{6}} = e^{-i\frac{\pi}{6}} = z_1 \text{ .} \end{split}$$

Ainsi, les racines sixièmes de (-1) sont z_k avec $k \in \left\{1,2,3,4,5,6\right\}$.

5.
$$z^{6} + 1 = (z - z_{1})(z - z_{2})(z - z_{3})(z - z_{4})(z - z_{5})(z - z_{6})$$

$$= \left(z - e^{-i\frac{\pi}{6}}\right)\left(z - e^{i\frac{\pi}{6}}\right)\left(z - i\right)\left(z - e^{i\frac{5\pi}{6}}\right)\left(z - e^{-i\frac{5\pi}{6}}\right)\left(z + i\right)$$

Or $(z-e^{i\theta})(z-e^{-i\theta})=z^2-(e^{i\theta}+e^{-i\theta})z+1=z^2-2\cos\theta z+1$; il en résulte que :

$$\begin{split} z^{6} + 1 &= \left(z - e^{-i\frac{\pi}{6}}\right) \left(z - e^{i\frac{\pi}{6}}\right) \left(z - i\right) \left(z - e^{i\frac{5\pi}{6}}\right) \left(z - e^{-i\frac{5\pi}{6}}\right) \left(z + i\right) \\ &= \left(z^{2} - 2\cos\frac{\pi}{6}z + 1\right) \left(z^{2} + 1\right) \left(z^{2} - 2\cos\frac{5\pi}{6}z + 1\right) \\ &= \left(z^{2} - \sqrt{3}z + 1\right) \left(z^{2} + 1\right) \left(z^{2} + \sqrt{3}z + 1\right) \end{split}$$