LYCEE IBN KHALDOUN RADES

Mr ABIDI Farid

DEVOIR DE SYNTHESE N°1 MATHEMATIQUES

Classes: 4M 1 & 2

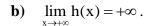
Durée: 3h

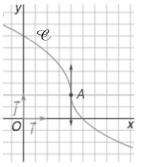
Année scolaire 2008-09

Exercice 1: (3 points)

Les trois questions suivantes sont indépendantes. Répondre par **Vrai** ou **Faux** à chacune des propositions données . Aucune justification n'est demandée.

- 1. Soit f une fonction continue sur [0, 1], strictement croissante sur [0, 1] et dérivable sur [0, 1]. Si l'on sait de plus que f(0) = -1 et f(1) = 1, alors :
 - a) L'équation f(x) = 0 admet une unique solution α dans]0, 1[.
 - **b)** L'équation f'(x) = -2 admet au moins une solution dans [0, 1[.
- 2. Soit f , g et h trois fonctions définies sur \mathbb{R} et vérifiant pour tout x réel , f $(x) \le g(x) \le h(x)$. Si l'on sait de plus que : $\lim_{x \to \infty} g(x) = +\infty$ alors :





- 3. \mathscr{C} est la courbe représentative d'une fonction f passant par A(2,1)
 - a) f est dérivable en 2
- **b)** A est un point d'inflexion de \mathscr{C} .

Exercice 2: (6 points)

Soit f la fonction définie sur l'intervalle $\left[-\frac{1}{2},\frac{1}{2}\right]$ par $f(x) = 1 + \sin(\pi x)$.

- 1. Montrer que f réalise une bijection de $\left[-\frac{1}{2}, \frac{1}{2}\right]$ sur [0, 2].
- 2. a) Montrer que f⁻¹, la fonction réciproque de f, est dérivable sur]0, 2[.
 - b) Déterminer pour tout x de]0, 2[, $(f^{-1})'(x) = \frac{1}{\pi\sqrt{2x-x^2}}$.
- 3. On pose pour tout x de [0, 2], $g(x) = f^{-1}(2-x) + f^{-1}(x)$.
 - a) Montrer que g est dérivable sur]0, 2[puis calculer, pour tout x de]0, 2[, g'(x).
 - b) En déduire que pour tout x de [0, 2], $f^{-1}(2-x) = -f^{-1}(x)$.
- 4. On pose pour tout n de \mathbb{N}^* , $u_n = \frac{1}{n} \sum_{k=0}^n f^{-1} \left(1 + \frac{1}{n+k} \right)$.
 - a) Montrer que, pour tout n de \mathbb{N}^* , $\frac{n+1}{n}f^{-1}\left(\frac{2n+1}{2n}\right) \le u_n \le \frac{n+1}{n}f^{-1}\left(\frac{n+1}{n}\right)$.

b) En déduire que la suite (u_n) est convergente et donner $\lim_{n\to +\infty} u_n$ puis $\lim_{n\to +\infty} \frac{1}{n} \sum_{k=0}^n f^{-k} \left(1 - \frac{1}{n+k}\right)$.

Exercice 3: (5 points)

 $\alpha \ \ \text{est un réel de} \ \left\lceil \frac{\pi}{2}, 2\pi \right\rceil \text{ , on considère l'équation (E)} : \ z^2 - \left(e^{i\alpha} - ie^{-i\alpha} + 2\right)z - i + 2e^{-i\alpha} = 0 \, .$

- 1. a) vérifier que $z_1 = e^{i\alpha}$ est solution de (E).
 - b) Déterminer z_2 l'autre solution de (E) puis vérifier que $z_2 = -i \overline{z_1} + 2$.
- 2. Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B, M_1 et M_2 d'affixes respectives 1, i , z_1 et z_2 .
- a) Montrer que l'application φ du plan dans lui-même qui à tout point M d'affixe z associe le point M' d'affixe z'=-iz+2 est une symétrie glissante que l'on caractérisera.
 - b) Montrer que, lorsque α décrit $\left[\frac{\pi}{2}, 2\pi\right]$, M_1 décrit l'arc \overrightarrow{BA} du cercle trigonométrique de centre O.
 - c) En déduire l'ensemble des points $\,{\rm M}_2\,$ lorsque $\,\alpha\,$ décrit $\left[\frac{\pi}{2},2\pi\right].$

Exercice 4: (6 points)

Dans le plan orienté, on considère un triangle équilatéral ABC de sens direct inscrit dans un cercle (%) de centre O. On note I le milieu du segment [BC] et D le symétrique de A par rapport à O.

- 1. Montrer que AO = DB et que I est milieu du segment [OD].
- 2. Soit f une isométrie du plan qui envoie A sur D et O sur B. On pose $g = t_{\overline{BO}} \circ f$ et K le point d'intersection des médiatrices des segments [AD] et [BO].
 - a) Déterminer g(O) et g(A). En déduire que $g = S_{(BO)}$ ou $g = r_{\left(O, -\frac{2\pi}{3}\right)}$.
 - b) Montrer que l'on a : $f = t_{\overrightarrow{OB}} \circ S_{(BO)}$ ou $f = r_{(K, -\frac{2\pi}{3})}$.
- 3. On désigne par $f_1 = t_{\overrightarrow{OB}} \circ S_{(BO)}$ et $f_2 = r_{(K, -\frac{2\pi}{3})}$.
 - a) Déterminer $f_2^{-1} \circ f_1(O)$ et $f_2^{-1} \circ f_1(A)$.
 - b) En déduire l'ensemble des points M du plan tels que $f_1(M) = f_2(M)$.

05 Déc 2008 page 2 - 8

Exercice 1: (3 points)

1. a) Vrai ; b) Faux

2. a) Faux ; b) Vrai

3. a) Faux ; b) Faux

Exercice 2: (6 points)

Soit f la fonction définie sur l'intervalle $\left[-\frac{1}{2}, \frac{1}{2}\right]$ par $f(x) = 1 + \sin(\pi x)$.

1. f est continue est dérivable sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Pour tout x de $\left[-\frac{1}{2}, \frac{1}{2}\right]$, $f'(x) = \pi \cos(\pi x)$.

Or $-\frac{1}{2} \le x \le \frac{1}{2} \Leftrightarrow -\frac{\pi}{2} \le \pi x \le \frac{\pi}{2} \text{ donc } \cos(\pi x) \ge 0$

d'où f'(x) ≥ 0 et f'(x) $= 0 \Leftrightarrow \begin{cases} -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ \cos(\pi x) = 0 \end{cases} \Leftrightarrow x = -\frac{\pi}{2} \text{ ou } x = \frac{\pi}{2}.$

Ainsi f est strictement croissante sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Par suite, f réalise une bijection de $\left[-\frac{1}{2},\frac{1}{2}\right]$ sur $f\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right) = \left[f\left(-\frac{\pi}{2}\right),f\left(\frac{\pi}{2}\right)\right] = [0,2].$

2. a) f est dérivable sur $\left[-\frac{1}{2},\frac{1}{2}\right]$ et $f'(x) \neq 0$ pour tout x de $\left]-\frac{1}{2},\frac{1}{2}\right[$ donc f^{-1} est dérivable

sur
$$f\left(\left]-\frac{1}{2},\frac{1}{2}\right[\right) = \left]0,2\right[$$
.

b) On a:
$$\begin{cases} -\frac{1}{2} < x < \frac{1}{2} \iff \begin{cases} 0 < y < 2 \\ f^{-1}(y) = x \end{cases}$$

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{\pi \cos(\pi x)}.$$

Exprimons $\left(f^{-1}\right)'(y)$ en fonction de y :

Comme pour tout x de $\left[-\frac{1}{2}, \frac{1}{2} \right] \cos(\pi x) > 0$ et $\sin(\pi x) = y - 1$ alors

$$\cos(\pi x) = \sqrt{1 - \sin^2(\pi x)} = \sqrt{1 - (y - 1)^2} = \sqrt{2y - y^2}$$
.

05 Déc 2008

Par conséquent, pour tout x de $]0, 2[, (f^{-1})'(x) = \frac{1}{\pi \sqrt{2x-x^2}}]$

- 3. Pour tout x de [0, 2], $g(x) = f^{-1}(2-x) + f^{-1}(x)$.
 - a) $f^{\text{--}1}$ est dérivable sur]0, 2[. La fonction $x \mapsto 2-x$ est dérivable sur]0, 2[.

D'autre part : $0 < x < 2 \Leftrightarrow -2 < -x < 0 \Leftrightarrow 0 < 2 - x < 2$. Il en résulte que la fonction $x \mapsto f^{-1}(2-x)$ est dérivable sur]0, 2[.

Ainsi g est dérivable sur [0, 2].

Pour tout x de [0, 2].

$$g'(x) = -(f^{-1})'(2-x) + (f^{-1})(x) = -\frac{1}{\pi\sqrt{2(2-x) - (2-x)^2}} + \frac{1}{\pi\sqrt{2x - x^2}}$$
$$= -\frac{1}{\pi\sqrt{(2-x)[2-(2-x)]}} + \frac{1}{\pi\sqrt{2x - x^2}} = -\frac{1}{\pi\sqrt{2x - x^2}} + \frac{1}{\pi\sqrt{2x - x^2}} = 0$$

b) la fonction est donc constante sur l'intervalle [0, 2] et on a pour tout x de [0, 2],

$$g(x) = g(1) \Leftrightarrow f^{-1}(2-x) + f^{-1}(x) = 2f^{-1}(1).$$

Or f(0) = 1 donc $f^{-1}(1) = 0$ et par suite pour tout x de [0, 2], $f^{-1}(2-x) + f^{-1}(x) = 0$ ou encore $f^{-1}(2-x) = -f^{-1}(x)$.

- 4. Pour tout n de \mathbb{N}^* , $u_n = \frac{1}{n} \sum_{k=1}^{n} f^{-1} \left(1 + \frac{1}{n+k} \right)$.
- a) la fonction f est strictement croissante sur $\left[-\frac{1}{2},\frac{1}{2}\right]$ donc sa bijection réciproque f⁻¹ est strictement croissante sur [0, 2].

Pour tout n de \mathbb{N}^* et pour tout k de $\{0,1,...,n\}$,

$$0 \le k \le n \Leftrightarrow n \le n + k \le 2n \Leftrightarrow \frac{1}{2n} \le \frac{1}{n+k} \le \frac{1}{n} \Leftrightarrow 1 + \frac{1}{2n} \le 1 + \frac{1}{n+k} \le 1 + \frac{1}{n}$$
$$\Leftrightarrow \frac{2n+1}{2n} \le 1 + \frac{1}{n+k} \le \frac{n+1}{n} \Leftrightarrow f^{-1}\left(\frac{2n+1}{2n}\right) \le f^{-1}\left(1 + \frac{1}{n+k}\right) \le f^{-1}\left(\frac{n+1}{n}\right)$$

05 Déc 2008 page 4 - 8

$$\begin{split} donc & \sum_{k=0}^n f^{-l} \Biggl(\frac{2n+1}{2n} \Biggr) \leq \sum_{k=0}^n f^{-l} \Biggl(1 + \frac{1}{n+k} \Biggr) \leq \sum_{k=0}^n f^{-l} \Biggl(\frac{n+1}{n} \Biggr) \\ \Leftrightarrow \Bigl(n+1 \Bigr) f^{-l} \Biggl(\frac{2n+1}{2n} \Biggr) \leq \sum_{k=0}^n f^{-l} \Biggl(1 + \frac{1}{n+k} \Biggr) \leq \Bigl(n+1 \Bigr) f^{-l} \Biggl(\frac{n+1}{n} \Biggr) \end{split}$$

D'où pour tout n de \mathbb{N}^* , $\frac{n+1}{n}f^{-1}\left(\frac{2n+1}{2n}\right) \le u_n \le \frac{n+1}{n}f^{-1}\left(\frac{n+1}{n}\right)$.

b) On a:
$$\lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} 1 + \frac{1}{n} = 1$$

$$donc \quad \lim_{n \to +\infty} f^{-1} \Biggl(\frac{n+1}{n} \Biggr) = f^{-1} \Bigl(1 \Bigr) = 0 \quad \ \ et \quad \lim_{n \to +\infty} f^{-1} \Biggl(\frac{2n+1}{2n} \Biggr) = \lim_{n \to +\infty} f^{-1} \Biggl(1 + \frac{1}{2n} \Biggr) = f^{-1} \Bigl(1 \Bigr) = 0$$

$$d'où \lim_{n \to +\infty} \frac{n+1}{n} f^{-1} \Biggl(\frac{n+1}{n} \Biggr) = \lim_{n \to +\infty} \frac{n+1}{n} f^{-1} \Biggl(\frac{2n+1}{2n} \Biggr) = 0 \ .$$

Il en résulte que $\lim_{n\to +\infty} u_n = 0$.

D'autre part : pour tout n de \mathbb{N}^* et pour tout k de $\{0,1,...,n\}$,

$$f^{-1}\left(1-\frac{1}{n+k}\right) = f^{-1}\left(2-\left(1+\frac{1}{n+k}\right)\right) = -f^{-1}\left(1+\frac{1}{n+k}\right).$$

$$Il \ en \ suit: \ \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^n f^{-l} \Biggl(1 - \frac{1}{n+k} \Biggr) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^n f^{-l} \Biggl(1 + \frac{1}{n+k} \Biggr) = \lim_{n \to +\infty} u_n = 0 \ .$$

Exercice 3: (5 points)

 $\alpha \ \text{ est un réel de } \left[\frac{\pi}{2}, 2\pi\right] \text{ , on considère l'équation (E)} : \ z^2 - \left(e^{i\alpha} - ie^{-i\alpha} + 2\right)z - i + 2e^{i\alpha} = 0 \, .$

$$\begin{array}{l} 1. \ a) \ e^{2i\alpha} - \left(e^{i\alpha} - ie^{-i\alpha} + 2\right) e^{i\alpha} - i + 2 e^{i\alpha} = e^{2i\alpha} - e^{2i\alpha} + i - 2 e^{i\alpha} - i + 2 e^{i\alpha} \\ \\ donc \ z_1 = e^{i\alpha} \ est \ solution \ de \ (E). \end{array}$$

b) l'autre solution
$$z_2$$
 de (E) vérifie $z_1+z_2=e^{i\alpha}-ie^{-i\alpha}+2 \Leftrightarrow z_2=-ie^{-i\alpha}+2$.
$$z_2=-i\overline{e^{i\alpha}}+2=-i\overline{z_1}+2$$
.

2. Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B, M_1 et M_2 d'affixes respectives $1, i, z_1$ et z_2 .

05 Déc 2008 page 5 - 8

a) Soit l'application φ du plan dans lui-même qui à tout point M d'affixe z associe le point M' d'affixe $z' = -i\overline{z} + 2$.

Comme |-i| = 1 alors φ est un antidéplacement.

D'autre part:

soit M(z), on note M'(z') l'image de M par φ et M''(z'') l'image de M' par φ .

Ainsi, $\varphi \circ \varphi(M) = M''$.

On a:
$$z' = -i\overline{z} + 2$$
 et $z'' = -i\overline{z'} + 2 = -i\overline{(-i\overline{z} + 2)} + 2 = -i(iz + 2) + 2 = z + 2 - 2i$.

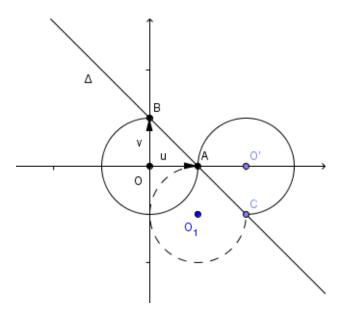
Par suite, $\varphi \circ \varphi$ est la translation de vecteur $2\overrightarrow{w}$ tel que \overrightarrow{w} d'affixe 1-i.

Comme $\varphi \circ \varphi \neq \mathrm{Id}_{p}$, alors φ est une symétrie glissante de vecteur \overrightarrow{w} d'affixe 1-i.

Soit $O' = \varphi(O)$, l'affixe de O' est $z_{O'} = 2$. Soit I le milieu du segment [OO'], I est d'affixe $z_I = \frac{z_{O'}}{2} = 1$ donc I est le point A. Ainsi l'axe de φ est donc la droite (Δ) passant par A de vecteur \overrightarrow{w} ou encore la droite (AB).

b) Lorsque α décrit $\left[\frac{\pi}{2}, 2\pi\right]$, M_1 d'affixe $z_1 = e^{i\alpha}$ appartient au cercle trigonométrique

 (\mathscr{C}) de centre O . Or B et A sont les points de (\mathscr{C}) d'affixe respectives $z_B = i = e^{i\frac{\pi}{2}}$ et $z_A = 1 = e^{i0}$ donc lorsque α décrit $\left[\frac{\pi}{2}, 2\pi\right]$, décrit l'arc \widehat{BA} du cercle (\mathscr{C}) .

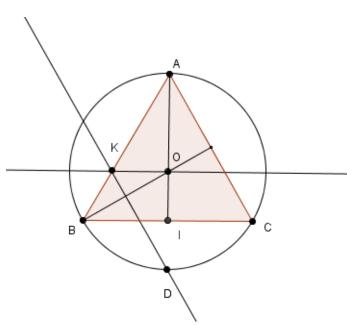


05 Déc 2008 page 6 - 8

c) Lorsque α décrit $\left[\frac{\pi}{2}, 2\pi\right]$, M_1 décrit l'arc \widehat{BA} du cercle ($\mathscr C$) alors $M_2 = \varphi(M_1)$

décrit l'arc \widehat{AC} image par φ de l'arc \widehat{BA} du cercle $\mathscr{C} = \varphi(\mathscr{C})$ de centre O' et de rayon 1 avec $C = \varphi(A)$ et d'affixe 2 - i.

Exercice 4: (6 points)



1. (AI) est la médiatrice du segment [BC] et D le symétrique de O par rapport à (BC) donc I est le milieu du segment [OD].

Or O est le centre du cercle (*C*) circonscrit au triangle équilatéral ABC donc O est le centre de gravité de ABC d'où AO = 2 OI = OD.

Et comme OA = OB alors OB = OD.

D'autre part,
$$(\widehat{OB}, \widehat{OD}) = 2(\widehat{AB}, \widehat{AD})[2\pi]$$
 d'où $(\widehat{OB}, \widehat{OD}) = (\widehat{AB}, \widehat{AC})[2\pi]$

Il en résulte que $(\widehat{\overrightarrow{OB}, OD}) \equiv \frac{\pi}{3} [2\pi]$.

Ainsi le triangle ABC est équilatéral et par suite OB = OD = BD.

On conclue que : AO = BD.

2. Soit f une isométrie du plan qui envoie A sur D et O sur B. On pose $g = t_{\overline{BO}} \circ f$ et K le point d'intersection des médiatrices des segments [AD] et [BO].

05 Déc 2008 page 7 - 8

a)
$$g(O) = t_{\overline{BO}} \circ f(O) = t_{\overline{BO}} [f(O)] = t_{\overline{BO}} (B) = O$$

et $g(A) = t_{\overline{BO}} \circ f(A) = t_{\overline{BO}} [f(A)] = t_{\overline{BO}} (D) = C$ car OBDC est un losange de centre I.

g est une isométrie fixant le point O et $g(A) \neq A$ donc $g \neq Id_p$ donc g est la symétrie orthogonale d'axe la médiatrice de [AC] ou g est la rotation de centre O et d'angle

$$\left(\widehat{\overline{OA}},\widehat{\overline{OC}}\right) \equiv -\frac{2\pi}{3} [2\pi].$$

$$Ainsi: \ g=S_{(BO)} \ ou \ g=r_{\left(O,-\frac{2\pi}{3}\right)}.$$

$$\begin{array}{l} b) \ g = S_{(BO)} \Longleftrightarrow t_{\overline{BO}} \circ f = S_{(BO)} \Longleftrightarrow t_{\overline{OB}} \circ t_{\overline{BO}} \circ f = t_{\overline{OB}} \circ S_{(BO)} \Longleftrightarrow f = t_{\overline{OB}} \circ S_{(BO)} \\ ou \ g = \ r_{\left(O, -\frac{2\pi}{3}\right)} \Longleftrightarrow t_{\overline{BO}} \circ f = r_{\left(O, -\frac{2\pi}{3}\right)} \Longleftrightarrow f = t_{\overline{OB}} \circ r_{\left(O, -\frac{2\pi}{3}\right)} \end{array}$$

f est donc la composée d'une translation et d'une rotation d'angle $-\frac{2\pi}{3}$ donc f est une

rotation d'angle
$$-\frac{2\pi}{3}$$
.

D'autre part f envoie A sur D et O sur B, donc le centre de la rotation f est le point d'intersection des médiatrices des segments [AD] et [OB] d'où est K le centre de f.

Et on écrit
$$f = r_{\left(K, -\frac{2\pi}{3}\right)}$$

- 3. On désigne par $f_1 = t_{\overline{OB}} \circ S_{(BO)}$ et $f_2 = r_{(K, -\frac{2\pi}{3})}$.
 - a) $f_1(O) = t_{\overline{OB}} \circ S_{(BO)}(O) = t_{\overline{OB}}(O) = B$ donc $f_2^{-1} \circ f_1(B) = f_2^{-1}(f_1(O)) = f_2^{-1}(B) = O$. $f_1(A) = t_{\overline{OB}} \circ S_{(BO)}(A) = t_{\overline{OB}}(C) = D$ donc $f_2^{-1} \circ f_1(A) = f_2^{-1}(f_1(A)) = f_2^{-1}(D) = A$.

b)
$$f_1(M) = f_2(M) \Leftrightarrow f_2^{-1} \lceil f_1(M) \rceil = M \Leftrightarrow f_2^{-1} \circ f_1(M) = M$$
.

Or f_1 est la composée d'une translation et d'une symétrie orthogonale d'où f_1 est un antidéplacement et f_2 est un déplacement ou encore f_2^{-1} est un déplacement donc $f_2^{-1} \circ f_1$ est un antidéplacement.

Et comme $f_2^{-1} \circ f_1$ fixe les points O et A alors est $f_2^{-1} \circ f_1 = S_{(OA)}$.

Ainsi,
$$S_{(OA)}(M) = M \Leftrightarrow M \in (OA)$$
.

L'ensemble des points M du plan tels que $f_1(M) = f_2(M)$ est la droite (OA).

05 Déc 2008 page 8 - 8