Mr ABIDI Farid

DEVOIR DE SYNTHESE N°1

MATHEMATIQUES

Classe : 4M 1 Durée : 4H

Mars 2014

Exercice 1: (3 points)

Répondre par Vrai ou Faux en justifiant la réponse.

- 1. la fonction $x \mapsto 2^x$ est solution sur \mathbb{R} de l'équation différentielle $y' \ln 2.y = 0$.
- 2. Si a est un réel strictement positif différent de 1 alors $a^{\frac{1}{\ln a}} = e$.
- 3. Si a est un réel de l'intervalle]1,e[alors $\lim_{x\to +\infty} (\ln a)^x = +\infty$.

Exercice 2: (4 points)

Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . x et y sont deux réels non nuls. X et Y sont deux réels.

A tout point M d'affixe z = x + iy, on associe le point M' d'affixe Z = X + iY telle que $Z = z + \frac{1}{z}$.

1. Démontrer que
$$X = x \left(1 + \frac{1}{x^2 + y^2}\right)$$
 et $Y = y \left(1 - \frac{1}{x^2 + y^2}\right)$.

2. On suppose que le point M se déplace sur le cercle d'équation $x^2 + y^2 = 4$.

Exprimer X et Y en fonction de x et y et démontrer que M' se déplace sur l'ellipse (E) d'équation $36X^2 + 100Y^2 = 225$.

3. On suppose que le point M se déplace sur la droite d'équation y = x, privé de O.

Vérifier que le point M' se déplace sur l'hyperbole (H) d'équation $X^2 - Y^2 = 2$.

- 4. Prouver que l'ellipse (E) et l'hyperbole (H) ont les mêmes foyers.
- 5. a) Vérifier que $A\left(\frac{5\sqrt{2}}{4}, \frac{3\sqrt{2}}{4}\right)$ est un point commun de (E) et (H).
 - b) Démontrer que les tangentes à (E) et à (H) en A sont perpendiculaires.

Exercice 3: (3 points)

Dans l'espace muni d'un repère orthonormé direct $\left(O,\vec{i},\vec{j},\vec{k}\right)$, on considère (P) le plan d'équation cartésienne 6x + 7y + 8z = 57.

- 1. Montrer que les plans (P) et $\left(O,\vec{i},\vec{j}\right)$ sont sécants suivant une droite (D) puis donner une représentation paramétrique de (D).
- 2. a) Déterminer un couple d'entiers relatifs (a, b) solution de l'équation 6a + 7b = 1.

- b) Déterminer les couples d'entiers relatifs (x, y) solutions de l'équation 6x + 7y = 57.
- 3. Prouver que la droite (D) ne contient qu'un seul point E dont les coordonnées sont des entiers naturels. Préciser les coordonnées de E.
- 4. On considère les points F(0,7,1) et $G(7\alpha-57,-6\alpha+57,0)$ où α est entier.

Déterminer α pour que le volume du tétraèdre OEFG soit égal à 57.

Exercice 4: (4 points)

Dans la figure sur annexe ci-jointe à la page 4/4 , ABC est un triangle tel que $\left(\overrightarrow{CA}, \overrightarrow{CB}\right) = \frac{\pi}{2} \left[2\pi\right]$ et $\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = \frac{\pi}{3} \left[2\pi\right]$. On désigne par Γ le cercle de centre O circonscrit au triangle ABC . Soit (T) est la tangente au cercle Γ au point C. On note E est le symétrique de A par rapport à (T) et par Γ le symétrique de B par rapport à (CE).

- 1. a) Montrer que ACE et BCF sont deux triangles équilatéraux.
 - b) En déduire que F appartient à (T).
- 2. Soit I le milieu de [AE]. Montrer que $\overrightarrow{CF} = -2\overrightarrow{CI}$.

On considère la similitude indirecte f de centre C qui envoie I sur F.

- 3. Déterminer le rapport et l'axe de f.
- 4. Soit G l'image de A par f.
 - a) Montrer que les droites (EA) et (FG) sont parallèles.
 - b) Montrer que $\overrightarrow{CG} = -2\overrightarrow{CE}$
 - c) En déduire une construction de G.

Exercice 5: (6 points)

Partie A

Soit g et G les fonctions définies sur $[0,+\infty[$ par $g(x) = \sqrt{e^{2x}-1}$ et $G(x) = \int_0^x g(t)dt$

- 1. Pour tout x de $[0,+\infty[$, on pose $H(x) = \int_0^x \frac{dt}{1+t^2}$.
 - a) Monter que H est dérivable sur $[0, +\infty[$ et calculer H'(x) pour tout x de $[0, +\infty[$.

- b) Calculer $(H \circ \tan)'(x)$ pour tout x de $\left[0, \frac{\pi}{2}\right[$. En déduire que pour tout x de $\left[0, \frac{\pi}{2}\right[$, $(H \circ \tan)(x) = x$. Calculer H(1).
- 2. Pour tout x de $[0,+\infty[$, on pose $F(x) = g(x) (H \circ g)(x)$.
 - a) Vérifier que F et G sont dérivables sur $]0,+\infty[$ et que pour tout x>0, F'(x)=G'(x).
 - b) En déduire que pour tout x de $\left[0,+\infty\right[$, G(x)=F(x). Calculer $I=\int_0^{\ln\left(\sqrt{2}\right)}g(t)dt$.

Partie B

Soit f la fonction définie sur $[0, +\infty[$ par $f(x) = e^{2x} - 1$. On pose $I_0 = \ln(\sqrt{2})$ et

pour tout entier naturel n non nul , on pose $I_n = \int_0^{\ln(\sqrt{2})} [f(x)]^{\frac{n}{2}} dx$.

- 1. a) Vérifier que f est dérivable sur $[0,+\infty[$ et que pour tout x réel positif , f'(x) = 2[1+f(x)] (1).
 - b) Montrer que en utilisant la relation (1) que pour tout n > 0, $I_n + I_{n+2} = \frac{1}{n+2}$ (2)

Vérifier que la relation (2) est encore valable pour n=0.

- c) En remarquant que la suite $\left(I_n\right)_{n\in\mathbb{N}}$ est positive, montrer que $\lim_{n\to +\infty}I_n=0$.
- 2. Pour tout entier naturel n, on pose $U_n = I_{n+4} I_n$.
 - a) En remplaçant n par (n + 2) dans la relation (2) , montrer que pour tout entier n , $U_n = \frac{1}{n+4} \frac{1}{n+2}$. En déduire l'expression de U_{4n+1} en fonction de n.
 - b) Calculer $\sum_{n=0}^{p} U_{4n+1}$ en fonction de I_{4p+5} et de I_{1} .
 - c) Calculer la limite lorsque p tend vers $+\infty$ de la somme $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots \frac{1}{4p+3} + \frac{1}{4p+5} = \sum_{n=0}^{2p+2} \frac{(-1)^n}{2n+1}$.

Annexe à compléter et à rendre avec la copie

Nom de l'élève :

